Sika® FerroGard®-903+
The Unique Multi-Functional Surface Applied Corrosion Inhibitor for Reinforced Concrete
Corrosion in Reinforced Concrete Structures

Aggressive Influences on Reinforced Concrete

In reinforced concrete the steel is normally protected against corrosion by the passivating alkalinity of the cement matrix. Due to the ingress of aggressive environmental influences the steel can corrode. Three conditions must exist for reinforcing steel to corrode:

- The passivation of the steel must have been destroyed by chlorides or by carbonation
- The presence of moisture as an electrolyte
- The presence of oxygen

Carbonation

Carbon dioxide ingress causes carbonation of the cement matrix progressively reducing the passivating alkaline protection of the steel reinforcement to a level where corrosion can occur.

Chloride attack

Chloride ions from deicing salts or marine exposure are carried into the concrete in solution in water. At the steel surface, even in alkaline concrete, they attack and break down the passivating layer and then accelerate the steel corrosion process.

The Effect of the Aggressive Influences

Chlorides/Carbonation

As soon as sufficient chloride ions (from deicing salts or marine exposure) or the carbonation front have reached the steel surface, the passive layer is destroyed and corrosion accelerates.

Contact with water (moisture)

The original neutral iron will receive a negative charge as the positively loaded ions have the tendency to dissolve. The water film around the metal turns positive.

Contact with oxygen

The oxygen takes on the negative charge of the iron ions which have gone into solution. The result is iron hydroxide, the first stage of rust.
Corrosion Management with Sika® Ferrogard® Technology

Description

**Sika® FerroGard®-903+** is a unique blend of non toxic, organic corrosion inhibitor based on amino alcohol and salts of amino alcohol technology, designed for use as an impregnation on hardened reinforced concrete. **Sika® FerroGard®-903+** is a multifunctional inhibitor which controls the cathodic and anodic reactions. This dual action effect significantly retards both the onset and the rate of corrosion and increases the time to future maintenance. **Sika® FerroGard®-903+** is normally applied as part of a corrosion management strategy. It is compatible and a component of all the Sika concrete repair and protection systems.

Performance and Durability

**Sika® FerroGard®-903+** penetrates the concrete and forms an adsorbed protective film on the surface of the steel reinforcement. The protective adsorbed film of **Sika® FerroGard®-903+** reduces the rate of corrosion in carbonated and chloride contaminated concrete. Many studies have been carried out on corrosion inhibitor technology around the world. Assessment of the technology has been investigated by Mott MacDonald and the Monarch University.

A more detailed investigation into the behaviour in carbonated concrete was done by the University of Cape Town and additionally with chloride contaminated concrete by the BRE, UK and the European project SAMARIS.

The Performance of Sika® FerroGard®-903+

**Protective layer**

**Sika® FerroGard®-903+** forms an adsorbed protective film on the reinforcement. The process of forming this protective film takes place even in carbonated concrete and even with the presence of chlorides in the concrete.

**Delay of the corrosion process**

- The dissolution of the iron in contact with water will be reduced thanks to this passivating protective film
- This film is also a barrier to the reduction of oxygen which will be prevented

Application

**Sika® FerroGard®-903+** is applied as an impregnation by spray, roller or brush onto the surface of the concrete. The corrosion inhibitor penetrates into the concrete and protects the reinforcement by forming a protective film on the steel surface. Through this the onset of corrosion is delayed and the rate of corrosion reduced. **Sika® FerroGard®-903+** is a clear colourless liquid which does not itself normally alter the aspect of fair-faced concrete. (Check if used in conjunction with chemical cleaners)

**Sika® FerroGard®-903+** penetrates to a depth of 25 to 40 mm in 1 month dependent on porosity of the concrete.

**Sika® FerroGard®-903+** reaches the surface of the steel through different transport mechanisms:

- During application of **Sika® FerroGard®-903+** transportation is mainly by capillary suction-like water
- **Sika® FerroGard®-903+** is later carried in solution by the penetration of water-like chlorides
- **Sika® FerroGard®-903+** also travels by gas diffusion-like carbon dioxide
**Existing Conditions and Aggressive Influences on the Structure**

**New Construction**

New building/new concrete e.g. high quality architectural concrete without protective coating.

The steel reinforcement is protected by the passivating alkalinity of the cement matrix, pH 12.5 to 13.5.

With the ingress of aggressive environmental influences, steel reinforcement can corrode. The concrete will be carbonated or passivation broken down by penetrating chlorides.

**Well Advanced Corrosion Risk but no Visible Corrosion Damage**

Concrete façade or civil engineering structure without protective coating.

- Steel reinforcement in a carbonated environment
- Perhaps light corrosion already exists
- No visible corrosion damage

**Visible Corrosion Damage. Concrete Repair Necessary**

Concrete surface (façade or civil engineering structure) without coating but with visible corrosion damage.

- e.g. spalling concrete, cracks, etc., concrete repair is necessary.

**Objectives and Requirements**

- Increasing service life of structure
- Preservation of architectural aspects
- Preserving protection to reinforcement
- No protective coatings

- Prevention maintenance
- Protection against possible concrete damage
- Re-passivation of steel
- Long term protection against further environmental influences (carbonation, deicing salt, etc.)

- Active maintenance
- Repair of damaged concrete surfaces only
- Structurally sound carbonated/chloride contaminated concrete remains
- Controlled concrete breakout
- Re-passivation of steel
- Protection against the development of latent damage
- Prevent the possibility of incipient anode corrosion
- Long term protection against further environmental influences
Reinforcement Protection Principles Using Sika® FerroGard®-903+

Principles Based on Remediation Techniques According to EN 1504-9

Corrosion protection will be increased by Sika® FerroGard®-903+ from the beginning, even to concrete surfaces with cracks or inadequate concrete to cover over the reinforcement.

- Principles:
  - Cathodic control
  - Anodic control

No further treatment

| Performance and Durability |
|-----------------------------|-------------------------|
| Limit of service life       | Extension of service life |
| Visible damage              | Visible damage           |
| No damage                   | No visible damage        |

- Increased corrosion protection
- Up to double the service life of the structure compared to unprotected structure
- Concrete properties and aspects will not be changed

Principles:
- Cathodic control
- Anodic control
- Increased concrete resistivity

1. Application of Sika® FerroGard®-903+ to protect reinforcement
2. Application of a Sikagard® hydrophobic impregnation or protective coating

Sikagard®

Principles:
- Concrete restoration
- Cathodic control
- Anodic control
- Increased concrete resistivity

1. Concrete repair using Sika® MonoTop® system
2. Application of Sika® FerroGard®-903+ to protect reinforcement
3. Application of a Sikagard® hydrophobic impregnation or protective coating

Sikagard®

Principles:
- Concrete repair using Sika® MonoTop® system
- Application of Sika® FerroGard®-903+ to protect reinforcement
- Application of a Sikagard® hydrophobic impregnation or protective coating

Sikagard®

Increased corrosion protection
Repair of damaged structure
Reinstatement and protection of concrete surface
Protection against latent damages
Improved appearance

Doubbling of the service life

Concrete without Sika® FerroGard®-903+ steel protection
Concrete with Sika® FerroGard®-903+ steel protection

10 – 20 years to next maintenance with Sikagard® coatings / hydrophobic impregnations

Concrete without Sika® FerroGard®-903+ steel protection
Concrete with Sika® FerroGard®-903+ steel protection

1 – New start after Sika® FerroGard®-903+ application

Average concrete quality without Sika® FerroGard®-903+
Average concrete quality with Sika® FerroGard®-903+

y = rate of corrosion

Onset of corrosion

Concrete with Sika® FerroGard®-903+ steel protection
Concrete without Sika® FerroGard®-903+ steel protection

Onset of corrosion

Concrete with Sika® FerroGard®-903+ steel protection
Concrete without Sika® FerroGard®-903+ steel protection

Onset of corrosion

Concrete with Sika® FerroGard®-903+ steel protection
Concrete without Sika® FerroGard®-903+ steel protection
Reinforced Corrosion Controls of Bridge

Structure/Condition:
- Reinforced concrete bridge structure
- Chloride induced corrosion to internal and external deck surfaces
- Localised concrete damage
- Low concrete cover to reinforcement

Requirements:
- Reduce active corrosion rates and maintain passive corrosion levels
- Control corrosion by anodic and cathodic principles
- Provide up to 10 years additional protection before next maintenance

Sika Solution:
- Testing to prove penetration of Sika® FerroGard®-903+ to depth of reinforcement
- Clean concrete surfaces
- Concrete repairs using e.g. Sika® MonoTop®-412 NFG
- Application of Sika® FerroGard®-903+
- Application of e.g. Sikagard® 705 L Hydrophobic Impregnation

Repair and Protection of Building Façades

Structure/Condition:
- External precast cladding panels carbonated with local concrete damage
- Chloride contaminated internal stairwells with local concrete damage
- Low cover to reinforcement. Defective waterproof joints between panels

Requirements:
- Limit noise and dust around building
- Repair, control corrosion, enhance and protect
- Up to 15 years maintenance free period
- Maintenance monitoring system
- Re-sealing of cladding joints

Sika Solution:
- Clean concrete surfaces
- Application of Sika® FerroGard®-903+
- Concrete repair with e.g. Sika® MonoTop®-211 RFG
- Application of e.g. Sika® MonoTop®-723 N Levelling mortar
- Application of e.g. Sikagard®-550 W Elastic protective coating
- Application of e.g. Sikaflex® AT Façade for movement joints
- Embedded probes for maintenance monitoring
Repair and Protection – Multi Storey Car Park

Structure/Condition:
- Reinforced concrete decks with cracked and spalling concrete
- Corrosion of reinforcement in carbonated and chloride contaminated concrete

Requirements:
- Reduce high and low corrosion rates by anodic, cathodic control and concrete resistivity principles
- Repair cracked and delaminated concrete and protect from future chlorides and carbonation
- Controlled concrete breakout
- Minimum 10 years to next maintenance
- Cost effective solution

Sika Solution:
- Clean concrete surfaces
- Application of Sika® FerroGard®-903®
- Concrete repairs and reprofiling with e.g. Sika® MonoTop®-412 N
- Application of Protective Sika® Deck Coating System
- Application of e.g. Sikagard®-675 W carbonation protective coating to soffits

Repair and Protection – Concrete Silos

Structure/Condition:
- Cracked and spalled concrete cladding panels with low concrete cover to reinforcement
- Defective waterproof joints between panels
- Corrosion of reinforcement in carbonated and chloride contaminated concrete

Requirements:
- Limit noise and dust
- Controlled concrete breakout
- Short repair program
- Control corrosion of steel by anodic, cathodic and concrete resistivity principles
- Up to 15 years maintenance free period
- Re-sealing of cladding joints

Sika Solution:
- Depth of penetration and permeability assessment trials to prove suitability of Sika® FerroGard®-903®
- Clean concrete surfaces
- Application of Sika® FerroGard®-903®
- Concrete repairs and reprofiling with e.g. Sika® MonoTop®-352 N light weight mortar
- Application of e.g. Sikagard®-550 W Elastic anti-carbonation/protective coating
- Application of e.g. Sikaflex® AT-Connection for construction joints
Sika Full Range Solutions for Construction

Concrete Production
- Sika® ViscoCrete®
- Sika® Retarder®
- Sika® SikaAer®

Waterproofing
- Sikaplan®, Sikalastic®, Sika® & Tricosal® Waterstops
- Sika® Injection Systems

Flooring
- Sikafloor®
- SikaBond®

Corrosion and Fire Protection
- SikaCor®, Sika® Unitherm®

Concrete Repair and Protection
- Sika® MonoTop®, Sikagard®, Sikadur®

Structural Strengthening
- Sika® CarboDur®, SikaWrap®, Sikadur®

Joint Sealing
- Sikaflex®, Sikasil®

Grouting
- Sikadur®, SikaGrout®

Roofing
- Sarnafil®, Sikaplan®, SikaRoof® MTC®

Also Available from Sika

Sika Services AG
Business Unit Contractors
Speckstrasse 22
8330 Pfäffikon / Switzerland
Phone +41 58 436 23 80
Fax +41 58 436 23 77
www.sika.com

Our most current General Sales Conditions shall apply.
Please consult the Product Data Sheet prior to any use and processing.